Performance Evaluation of SVM – RBF Kernel for Medical Image Classification
نویسندگان
چکیده
An approach for automatic classification of computed tomography (CT) medical images is presented in this paper. A vast amount of CT images are produced in modern hospitals due to advances of multi-slice Computed Tomography (CT) Scan which handles up to 64 slices per scan. So, an input image based automatic medical image retrieval system is now a necessity. In this paper, Coiflet wavelets are used to extract feature from the CT images. The extracted features are then classified using Support Vector Machine (SVM) with Radial Basis Function (RBF). The performance of SVM for varying parameters is investigated.
منابع مشابه
MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملDetermination of SVM-RBF Kernel Space Parameter to Optimize Accuracy Value of Indonesian Batik Images Classification
Corresponding Author: Fikri Budiman Department of Computer Science, University of Dian Nuswantoro, Semarang, Indonesia Email: [email protected] Abstract: Image retrieval using Support Vector Machine (SVM) classification very depends on kernel function and parameter. Kernel function used by dot product substitution from old dimension feature to new dimension depends on image dataset ...
متن کاملImpact of Patients’ Gender on Parkinson’s disease using Classification Algorithms
In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملA Fast and Automatic Kernel-based Classification Scheme: GDA+SVM or KNWFE+SVM
For high-dimensional data classification such as hyperspectral image classification, feature extraction is a crucial pre-process for avoiding the Hughes phenomena. Some feature extraction methods such as linear discriminant analysis (LDA), nonparametric weighted feature extraction (NWFE), and their kernel versions, generalized discriminant analysis (GDA) and kernel nonparametric weighted featur...
متن کامل